Home
 Acknowledgements
 Call for Papers
 Call for Special Sessions
 Topical Workshops
 Committees & Sponsors
 Keynote Speakers
 Special Session Organizers
 Program "NEW!!"
 Author Pages
 Registration
 Venue & Accommodation
 Location
 Travel
 Contact
3M-NANO Society
3M-NANO 2011
3M-NANO 2012
3M-NANO 2013
3M-NANO 2014
3M-NANO 2015
3M-NANO 2016
3M-NANO 2017
3M-NANO 2018
3M-NANO 2019
3M-NANO 2020
3M-NANO 2021
3M-NANO 2022
3M-NANO 2024
3M-NANO 2025
IEEE NMDC
 
Contact

3M-NANO 2023 Secretariat:

3M-NANO@cust.edu.cn
ieee3mnano@163.com

Phone: +86 431 85582926
Mobile: +86 17649996408
           +86 13578985670
Fax: +86 431 85582925
  Zhengtang Luo  
 

Zhengtang Luo
Associate Professor
The Hong Kong University of Science and Technology
Area 8F Chair for Materials Engineering & Sciences Division (MESD) | AIChE.
Associate Editor, ACS Applied Materials & Interfaces
China
Title: Low-temperature substitutional growth of two-dimensional metal chalcogenides
 
Abstract:Two-dimensional (2D) metal chalcogenides (MCs), including metallic MCs (e.g., VS2, CoS2, TiX2), semiconducting MCs (e.g., MoS2, WS2, SnSe2), and topological insulating MCs (e.g., Bi2Se3, Bi2Te3) are promising nanomaterials with rich applications (e.g., detectors, memory, and emitters) that can be integrated onto a wafer platform. However, the direct growth of most 2D MCs using chemical vapor deposition (CVD) requires higher temperatures generally ranging from 550 to 1000 °C, to obtain sufficient crystallinity, where the high temperature typically complicates the integration of multiple components on the wafer. Therefore, it is desirable to develop a universal strategy enabling the low-temperature (<450 °C; compatible with the BEOL in microelectronics) growth of 2D MC materials so that adding new materials will not degrade the already existing components. In this talk, I will present a two-step substitutional epitaxial strategy that enables the low-temperature growth of 17 different 2D metal chalcogenides on mica or on transition metal dichalcogenides (TMD) to form MC/TMD heterostructures, showing a promising pathway for the integration of different high-quality 2D materials.
 
Representative papers:
[1] Zhang, K.; She, Y.;  Cai, X.;  Zhao, M.;  Liu, Z.;  Ding, C.; Zhang, L.; *, Zhou, W.;  Ma, J.;  Liu, H.;   Li, L.-J.;*, Luo, Z.;*  Huang, S.;* Epitaxial substitution of metal iodides for low-temperature growth of 2D metal chalcogenides, Nature Nanotech. 2023.
[2] Tamtaji, M.; Peng, Q.; Liu, T.; Zhao, X.; Xu, Z.; Galligan, P.R.; Hossain, M.D.; Liu, Z.; Wong, H.; Liu, H.; Amine, K.; Zhu, Y.; Goddard II, W.A.; Wu, W.; Luo, Z.; Non-bonding Interaction of Dual Atom Catalysts for Enhanced Oxygen Reduction Reaction. Nano Energy, 2023, 108218
[3] You, J., You, J.; Pan, J.;  Shang,S.;  Xu, X.; Liu, Z.;  Li, J.; Liu, H.; Kang, T.;  Xu, M.; Li, S.;   Kong, D.; Wang*,W.;  Gao,Z.; Zhou, X.;   Zhai, T.; Liu, Z.;  Kim, J.K.;*  Luo, Z.;* Salt-Assisted Selective Growth of H-phase Monolayer VSe2 with Apparent Hole Transport Behavior. Nano Letters, 2022, 22(24): 10167-10175.
[4] Hossain, Md D.; Huang, Y.; Yu, T.H.; Goddard, W. A. II* and Luo, Z. * Reaction mechanism and kinetics for CO2  reduction on Ni SAC from quantum mechanics, Nature Comm. 2020, 11, 2256. 
[5] Hossain, M. D.; Liu, Z.; Zhuang, M.; Yan, X.; Xu, G. -L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. -J.; Wong, H.; Guda, A.; Hao, Y.; Pan, X.; Amine, K.; Luo, Z.*; Rational Design of Graphene-Supported SAC for HER, Adv. Energy Mater. 2019.